Project

Profile

Help

HostedRedmine.com has moved to the Planio platform. All logins and passwords remained the same. All users will be able to login and use Redmine just as before. Read more...

Task #544778 » Model.h

文章 刘, 2016-05-15 04:41 PM

 
#pragma once
// Std. Includes
#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <map>
#include <vector>
using namespace std;
// GL Includes
#include <GL/glew.h> // Contains all the necessery OpenGL includes
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <SOIL.h>
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>

#include "Mesh.h"

GLint TextureFromFile(const char* path, string directory);

class Model
{
public:
/* Functions */
// Constructor, expects a filepath to a 3D model.
Model(GLchar* path)
{
this->loadModel(path);
}

// Draws the model, and thus all its meshes
void Draw(Shader shader)
{
for (GLuint i = 0; i < this->meshes.size(); i++)
this->meshes[i].Draw(shader);
}

private:
/* Model Data */
vector<Mesh> meshes;
string directory;
vector<Texture> textures_loaded; // Stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once.

/* Functions */
// Loads a model with supported ASSIMP extensions from file and stores the resulting meshes in the meshes vector.
void loadModel(string path)
{
// Read file via ASSIMP
Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs);
// Check for errors
if (!scene || scene->mFlags == AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero
{
cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
return;
}
// Retrieve the directory path of the filepath
this->directory = path.substr(0, path.find_last_of('/'));

// Process ASSIMP's root node recursively
this->processNode(scene->mRootNode, scene);
}

// Processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any).
void processNode(aiNode* node, const aiScene* scene)
{
// Process each mesh located at the current node
for (GLuint i = 0; i < node->mNumMeshes; i++)
{
// The node object only contains indices to index the actual objects in the scene.
// The scene contains all the data, node is just to keep stuff organized (like relations between nodes).
aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
this->meshes.push_back(this->processMesh(mesh, scene));
}
// After we've processed all of the meshes (if any) we then recursively process each of the children nodes
for (GLuint i = 0; i < node->mNumChildren; i++)
{
this->processNode(node->mChildren[i], scene);
}

}

Mesh processMesh(aiMesh* mesh, const aiScene* scene)
{
// Data to fill
vector<Vertex> vertices;
vector<GLuint> indices;
vector<Texture> textures;

// Walk through each of the mesh's vertices
for (GLuint i = 0; i < mesh->mNumVertices; i++)
{
Vertex vertex;
glm::vec3 vector; // We declare a placeholder vector since assimp uses its own vector class that doesn't directly convert to glm's vec3 class so we transfer the data to this placeholder glm::vec3 first.
// Positions
vector.x = mesh->mVertices[i].x;
vector.y = mesh->mVertices[i].y;
vector.z = mesh->mVertices[i].z;
vertex.Position = vector;
// Normals
vector.x = mesh->mNormals[i].x;
vector.y = mesh->mNormals[i].y;
vector.z = mesh->mNormals[i].z;
vertex.Normal = vector;
// Texture Coordinates
if (mesh->mTextureCoords[0]) // Does the mesh contain texture coordinates?
{
glm::vec2 vec;
// A vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't
// use models where a vertex can have multiple texture coordinates so we always take the first set (0).
vec.x = mesh->mTextureCoords[0][i].x;
vec.y = mesh->mTextureCoords[0][i].y;
vertex.TexCoords = vec;
}
else
vertex.TexCoords = glm::vec2(0.0f, 0.0f);
vertices.push_back(vertex);
}
// Now wak through each of the mesh's faces (a face is a mesh its triangle) and retrieve the corresponding vertex indices.
for (GLuint i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
// Retrieve all indices of the face and store them in the indices vector
for (GLuint j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}
// Process materials
if (mesh->mMaterialIndex >= 0)
{
aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
// We assume a convention for sampler names in the shaders. Each diffuse texture should be named
// as 'texture_diffuseN' where N is a sequential number ranging from 1 to MAX_SAMPLER_NUMBER.
// Same applies to other texture as the following list summarizes:
// Diffuse: texture_diffuseN
// Specular: texture_specularN
// Normal: texture_normalN

// 1. Diffuse maps
vector<Texture> diffuseMaps = this->loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
// 2. Specular maps
vector<Texture> specularMaps = this->loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
}

// Return a mesh object created from the extracted mesh data
return Mesh(vertices, indices, textures);
}

// Checks all material textures of a given type and loads the textures if they're not loaded yet.
// The required info is returned as a Texture struct.
vector<Texture> loadMaterialTextures(aiMaterial* mat, aiTextureType type, string typeName)
{
vector<Texture> textures;
for (GLuint i = 0; i < mat->GetTextureCount(type); i++)
{
aiString str;
mat->GetTexture(type, i, &str);
// Check if texture was loaded before and if so, continue to next iteration: skip loading a new texture
GLboolean skip = false;
for (GLuint j = 0; j < textures_loaded.size(); j++)
{
if (textures_loaded[j].path == str)
{
textures.push_back(textures_loaded[j]);
skip = true; // A texture with the same filepath has already been loaded, continue to next one. (optimization)
break;
}
}
if (!skip)
{ // If texture hasn't been loaded already, load it
Texture texture;
texture.id = TextureFromFile(str.C_Str(), this->directory);
texture.type = typeName;
texture.path = str;
textures.push_back(texture);
this->textures_loaded.push_back(texture); // Store it as texture loaded for entire model, to ensure we won't unnecesery load duplicate textures.
}
}
return textures;
}
};




GLint TextureFromFile(const char* path, string directory)
{
//Generate texture ID and load texture data
string filename = string(path);
filename = directory + '/' + filename;
GLuint textureID;
glGenTextures(1, &textureID);
int width, height;
unsigned char* image = SOIL_load_image(filename.c_str(), &width, &height, 0, SOIL_LOAD_RGB);
// Assign texture to ID
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
glGenerateMipmap(GL_TEXTURE_2D);

// Parameters
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, 0);
SOIL_free_image_data(image);
return textureID;
}
    (1-1/1)