|
#pragma once
|
|
// Std. Includes
|
|
#include <string>
|
|
#include <fstream>
|
|
#include <sstream>
|
|
#include <iostream>
|
|
#include <map>
|
|
#include <vector>
|
|
using namespace std;
|
|
// GL Includes
|
|
#include <GL/glew.h> // Contains all the necessery OpenGL includes
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
#include <SOIL.h>
|
|
#include <assimp/Importer.hpp>
|
|
#include <assimp/scene.h>
|
|
#include <assimp/postprocess.h>
|
|
|
|
#include "Mesh.h"
|
|
|
|
GLint TextureFromFile(const char* path, string directory);
|
|
|
|
class Model
|
|
{
|
|
public:
|
|
/* Functions */
|
|
// Constructor, expects a filepath to a 3D model.
|
|
Model(GLchar* path)
|
|
{
|
|
this->loadModel(path);
|
|
}
|
|
|
|
// Draws the model, and thus all its meshes
|
|
void Draw(Shader shader)
|
|
{
|
|
for (GLuint i = 0; i < this->meshes.size(); i++)
|
|
this->meshes[i].Draw(shader);
|
|
}
|
|
|
|
private:
|
|
/* Model Data */
|
|
vector<Mesh> meshes;
|
|
string directory;
|
|
vector<Texture> textures_loaded; // Stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once.
|
|
|
|
/* Functions */
|
|
// Loads a model with supported ASSIMP extensions from file and stores the resulting meshes in the meshes vector.
|
|
void loadModel(string path)
|
|
{
|
|
// Read file via ASSIMP
|
|
Assimp::Importer importer;
|
|
const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs);
|
|
// Check for errors
|
|
if (!scene || scene->mFlags == AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero
|
|
{
|
|
cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
|
|
return;
|
|
}
|
|
// Retrieve the directory path of the filepath
|
|
this->directory = path.substr(0, path.find_last_of('/'));
|
|
|
|
// Process ASSIMP's root node recursively
|
|
this->processNode(scene->mRootNode, scene);
|
|
}
|
|
|
|
// Processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any).
|
|
void processNode(aiNode* node, const aiScene* scene)
|
|
{
|
|
// Process each mesh located at the current node
|
|
for (GLuint i = 0; i < node->mNumMeshes; i++)
|
|
{
|
|
// The node object only contains indices to index the actual objects in the scene.
|
|
// The scene contains all the data, node is just to keep stuff organized (like relations between nodes).
|
|
aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
|
|
this->meshes.push_back(this->processMesh(mesh, scene));
|
|
}
|
|
// After we've processed all of the meshes (if any) we then recursively process each of the children nodes
|
|
for (GLuint i = 0; i < node->mNumChildren; i++)
|
|
{
|
|
this->processNode(node->mChildren[i], scene);
|
|
}
|
|
|
|
}
|
|
|
|
Mesh processMesh(aiMesh* mesh, const aiScene* scene)
|
|
{
|
|
// Data to fill
|
|
vector<Vertex> vertices;
|
|
vector<GLuint> indices;
|
|
vector<Texture> textures;
|
|
|
|
// Walk through each of the mesh's vertices
|
|
for (GLuint i = 0; i < mesh->mNumVertices; i++)
|
|
{
|
|
Vertex vertex;
|
|
glm::vec3 vector; // We declare a placeholder vector since assimp uses its own vector class that doesn't directly convert to glm's vec3 class so we transfer the data to this placeholder glm::vec3 first.
|
|
// Positions
|
|
vector.x = mesh->mVertices[i].x;
|
|
vector.y = mesh->mVertices[i].y;
|
|
vector.z = mesh->mVertices[i].z;
|
|
vertex.Position = vector;
|
|
// Normals
|
|
vector.x = mesh->mNormals[i].x;
|
|
vector.y = mesh->mNormals[i].y;
|
|
vector.z = mesh->mNormals[i].z;
|
|
vertex.Normal = vector;
|
|
// Texture Coordinates
|
|
if (mesh->mTextureCoords[0]) // Does the mesh contain texture coordinates?
|
|
{
|
|
glm::vec2 vec;
|
|
// A vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't
|
|
// use models where a vertex can have multiple texture coordinates so we always take the first set (0).
|
|
vec.x = mesh->mTextureCoords[0][i].x;
|
|
vec.y = mesh->mTextureCoords[0][i].y;
|
|
vertex.TexCoords = vec;
|
|
}
|
|
else
|
|
vertex.TexCoords = glm::vec2(0.0f, 0.0f);
|
|
vertices.push_back(vertex);
|
|
}
|
|
// Now wak through each of the mesh's faces (a face is a mesh its triangle) and retrieve the corresponding vertex indices.
|
|
for (GLuint i = 0; i < mesh->mNumFaces; i++)
|
|
{
|
|
aiFace face = mesh->mFaces[i];
|
|
// Retrieve all indices of the face and store them in the indices vector
|
|
for (GLuint j = 0; j < face.mNumIndices; j++)
|
|
indices.push_back(face.mIndices[j]);
|
|
}
|
|
// Process materials
|
|
if (mesh->mMaterialIndex >= 0)
|
|
{
|
|
aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
|
|
// We assume a convention for sampler names in the shaders. Each diffuse texture should be named
|
|
// as 'texture_diffuseN' where N is a sequential number ranging from 1 to MAX_SAMPLER_NUMBER.
|
|
// Same applies to other texture as the following list summarizes:
|
|
// Diffuse: texture_diffuseN
|
|
// Specular: texture_specularN
|
|
// Normal: texture_normalN
|
|
|
|
// 1. Diffuse maps
|
|
vector<Texture> diffuseMaps = this->loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
|
|
textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
|
|
// 2. Specular maps
|
|
vector<Texture> specularMaps = this->loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
|
|
textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
|
|
}
|
|
|
|
// Return a mesh object created from the extracted mesh data
|
|
return Mesh(vertices, indices, textures);
|
|
}
|
|
|
|
// Checks all material textures of a given type and loads the textures if they're not loaded yet.
|
|
// The required info is returned as a Texture struct.
|
|
vector<Texture> loadMaterialTextures(aiMaterial* mat, aiTextureType type, string typeName)
|
|
{
|
|
vector<Texture> textures;
|
|
for (GLuint i = 0; i < mat->GetTextureCount(type); i++)
|
|
{
|
|
aiString str;
|
|
mat->GetTexture(type, i, &str);
|
|
// Check if texture was loaded before and if so, continue to next iteration: skip loading a new texture
|
|
GLboolean skip = false;
|
|
for (GLuint j = 0; j < textures_loaded.size(); j++)
|
|
{
|
|
if (textures_loaded[j].path == str)
|
|
{
|
|
textures.push_back(textures_loaded[j]);
|
|
skip = true; // A texture with the same filepath has already been loaded, continue to next one. (optimization)
|
|
break;
|
|
}
|
|
}
|
|
if (!skip)
|
|
{ // If texture hasn't been loaded already, load it
|
|
Texture texture;
|
|
texture.id = TextureFromFile(str.C_Str(), this->directory);
|
|
texture.type = typeName;
|
|
texture.path = str;
|
|
textures.push_back(texture);
|
|
this->textures_loaded.push_back(texture); // Store it as texture loaded for entire model, to ensure we won't unnecesery load duplicate textures.
|
|
}
|
|
}
|
|
return textures;
|
|
}
|
|
};
|
|
|
|
|
|
|
|
|
|
GLint TextureFromFile(const char* path, string directory)
|
|
{
|
|
//Generate texture ID and load texture data
|
|
string filename = string(path);
|
|
filename = directory + '/' + filename;
|
|
GLuint textureID;
|
|
glGenTextures(1, &textureID);
|
|
int width, height;
|
|
unsigned char* image = SOIL_load_image(filename.c_str(), &width, &height, 0, SOIL_LOAD_RGB);
|
|
// Assign texture to ID
|
|
glBindTexture(GL_TEXTURE_2D, textureID);
|
|
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
|
|
glGenerateMipmap(GL_TEXTURE_2D);
|
|
|
|
// Parameters
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
glBindTexture(GL_TEXTURE_2D, 0);
|
|
SOIL_free_image_data(image);
|
|
return textureID;
|
|
}
|